For Research Use Only. NOT for Use in Diagnostic Procedures.

Extraction of a Comprehensive Steroid Panel from Human Urine Using EVOLUTE® EXPRESS ABN Prior to LC/MS-MS Analysis

Figure 1. Structures of (a) DHEAS, (b) Estradiol and (c) Testosterone.

Introduction

This application note describes the extraction of a panel of 19 steroid hormones from human urine using EVOLUTE® EXPRESS ABN solid phase extraction plates prior to LC-MS/MS analysis. The simple sample preparation procedure delivers clean extracts and analyte recoveries greater than 75% with RSDs lower than 5% for most analytes. Linearity of greater than 0.999 is achieved for all analytes in the range 1–1000 pg/mL.

Manual sample preparation was performed using the Biotage® Pressure+ 96 Positive Pressure Manifold. The sample preparation method is automatable using the Biotage® Extrahera™. See Appendix for automation parameters and comparative data generated using the automated method.

EVOLUTE EXPRESS products dramatically improve flow characteristics and enhance sample preparation productivity.

Analytes

Cortisol, 18-OH-Corticosterone, 21-Deoxycortisol, Cortisone, Estradiol, 17-OH-Pregnenolone, Aldosterone, 11-Deoxycortisol, Corticosterone, Estrone, Dehydroepiandrosterone (DHEA), 17-OH-Progesterone, Dehydroepiandrosterone sulfate (DHEAS), Testosterone, Dihydrotestosterone (DHT), Pregnenolone, Androstenedione, 11-deoxycorticosterone, Progesterone

Internal Standards

Dihydrotestosterone-D₃ (DHT-D₃) and Aldosterone-D₃

Sample Preparation Procedure

Format

EVOLUTE® EXPRESS ABN 10 mg plate, (p/n) 600-0010-PX01

Sample Pre-treatment

Add 20 μ L of a 10 pg/ μ L methanolic ISTD solution to 200 μ L of human urine and mix to give a final concentration of 1 ng/mL. Dilute sample 1:1 (v/v) with water and mix.

Condition (optional)

Condition wells with methanol (500 µL)

Equilibration (optional)

Equilibrate wells with 0.1% Formic Acid (aq) (500 μL)

Sample loading

Load 400 µL of pre-treated urine into each well

Wash 1

Elute interferences with H₂O (500 μL)

Wash 2

Elute interferences with $H_2O:MeOH$ (60:40, v/v, 500 μL)

Elution

Elute analytes with methanol (200 µL)

Post Elution and Reconstitution

Dry the extract in a stream of air or nitrogen using a Biotage® SPE Dry at 40 °C, at a flow rate of 20 to 40 L/min, for approximately 20 minutes.

Reconstitute evaporated samples with mobile phase A: mobile phase B (50:50, v/v, 200 μ L) and vortex mix. Cover plate with a sealing mat prior to injection.

UHPLC Conditions

Instrument

Shimadzu Nexera X2 UHPLC

Column

ACE C18 (100 mm x 2.1 mm, 1.7 μ m) (Advanced Chromatography Technologies Ltd, Aberdeen, UK) with EXP Guard column holder fitted with a C-18 cartridge (Restek, UK)

Mobile Phase

A: 0.2 mM Ammonium Fluoride (aq)

B: Methanol

Flow Rate

o.4 mL/min

Column Temperature

40 °C

Injection Volume

5 μL

Table 1. UHPLC Gradient.

Time (min)	%A	%В
0	50	50
2	50	50
5	40	60
8	10	90
9	5	95
9.1	5	95
9.2	50	50

 $\textbf{Table 2.} \ \mathsf{MS} \ \mathsf{conditions} \ \mathsf{for} \ \mathsf{target} \ \mathsf{analytes} \ \mathsf{in} \ \mathsf{positive} \ \mathsf{and} \ \mathsf{negative} \ \mathsf{mode}.$

Analytes	MRM Transition	Collision Energy	Ion Mode
DHEAS	367.1>97.05 (367.1>191.05)	33	-
Cortisol	363.4>121.25 (363.40>327.15)	-24	+
18-OH-Corticosterone	363.3>269.2 (363.30>121.10)	-16	+
Cortisone	361.3>163.15 (361.30>329.15)	-22	+
21-Deoxycortisol	347.1>311.2 (347.10>269.20)	-16	+
Estradiol	271.1>145.2 (271.10>183.25)	39	-
Aldosterone-D ₄	363.1>190.3	19	-
Aldosterone	359.1>189.25 (359.00>297.15)	18	-
17-OH-Pregnenolone	315.3>297.2 (315.30>251.00)	-13	+
11-Deoxycortisol	347.3>109.25 (347.30>283.15)	-27	+

MS Conditions

Instrument

Shimadzu 8060 Triple Quadrupole MS using ES interface

Nebulizing Gas Flow

3 L/min

Drying Gas Flow

3 L/min

Heating Gas Flow

17 L/min

Interface Temperature

400 °C

DL Temperature

250 °C

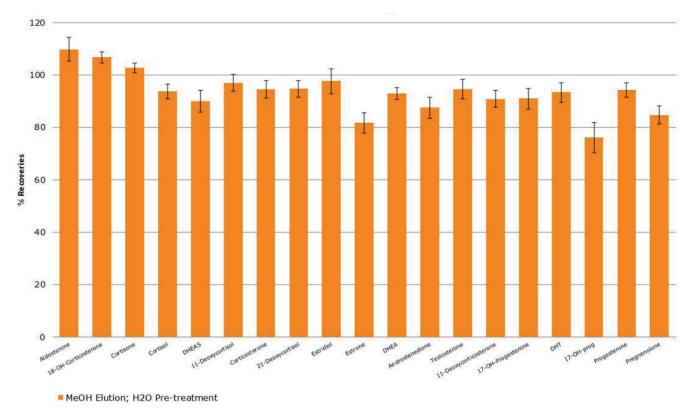
Heat Block Temperature

400 °C

Interface Temperature

400 °C

CID Gas Flow


270 kPa

For optimum sensitivity, data was acquired in both positive and negative ion modes, as appropriate, shown in Table 2.

Analytes	MRM Transition	Collision Energy	Ion Mode
Corticosterone	347.3>329.25 (347.30>283.15)	-16	+
Esterone	269.2>145.2 (269.20>143.20)	37	-
11-Deoxycorticosterone	331.3>109.05 (331.30>97.25)	-25	+
DHEA	271.10>253.20 (271.10>213.20)	-13	+
Testosterone	289.3>97.05	-23	+
DHT-D ₃	294.4>258.25	-16	+
DHT	291.3>255.25	-15	+
Androstenedione	287.3>97.2 (287.30>109.20)	-21	+
Pregnenolone	299.3>159.25 (299.30>281.20)	-20	+
17-OH-Progesterone	331.3>97.1	-22	+
Progesterone	315.2>97.2 (331.30>109.15)	-22	+

Results

Figure 2. Typical analyte % extraction recoveries (n=7) using methanol as the elution solvent.

This optimized SPE protocol delivers typical analyte recoveries above 75%, with corresponding RSDs below 5%, with a few exceptions. Inclusion of the polar DHEAS metabolite requires methanol as the elution solvent. If DHEAS is not required, alternative elution solvents such as ethyl acetate may be used. Recovery data for methanol elution is shown below in Figure 2.

Figure 3. demonstrates representative chromatography obtained from stripped urine spiked at 5 ng/mL. Satisfactory resolution of the various isobars was obtained using the ACE C18 UHPLC column. In order to achieve low level detection of analytes in positive and negative ion modes a combination of 0.2 mM $\rm NH_4F$ (aq) and MeOH was utilized in the mobile phase.

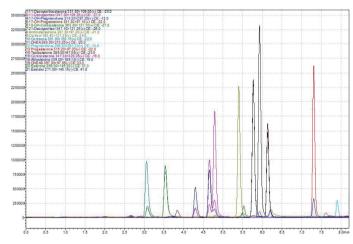
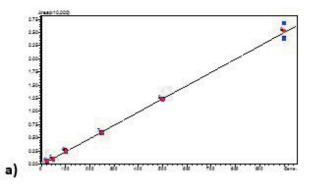
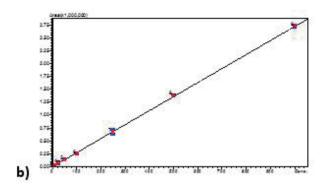
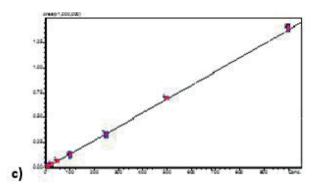


Figure 3. Representative chromatography for stripped urine spiked at 5 ng/mL.


Calibration curve performance was investigated from female urine spiked in the range 1–1000 pg/mL. Good linearity was observed for all analytes typically delivering r² values greater than 0.999. Table 3. details linearity performance and associated LOQ for each analyte. Selected calibration curves are demonstrated in Figure 4.


Table 3. Analyte calibration curve r² and LOQ performance.


Analytes	r²	LLOQ (pg/mL)
DHEAS	0.9997	50
Cortisol	0.9996	1
18-OH-Corticosterone	0.9996	10
Cortisone	0.9997	< 10
21-Deoxycortisol	0.9992	5
Estradiol	0.9991	25
Aldosterone	0.9990	100
17-OH-Pregnenolone	0.9993	< 250
11-Deoxycortisol	0.9993	1
Corticosterone	0.9995	< 1
Estrone	0.9992	< 5
11-Deoxycorticosterone	0.9993	< 5
DHEA	0.9992	< 25
Testosterone	0.9994	< 5
DHT	0.9991	< 5
Androstenedione	0.9994	5
Pregnenolone	0.9992	50
17-OH-Progesterone	0.9990	10
Progesterone	0.9990	< 50

Chemicals and Reagents

- Methanol (LC-MS grade), Ultra-Pure Methanol (Gradient MS) and formic acid (98%) were purchased from Honeywell Research Chemicals (Bucharest, Romania).
- » All analyte standards and deuterated internal standards were purchased from Sigma- Aldrich Company Ltd. (Gillingham, UK).
- Water (18.2 M Ω -cm), was drawn fresh daily from a Direct-Q5 water purifier (Merck Millipore, Watford, UK).
- Mobile phase A (0.2 mM ammonium fluoride (aq)) was prepared by adding 7.4 mg of ammonium fluoride to 1 L with purified water.
- » Internal standards (100 pg/µL) were prepared from a 10 ng/µL stock solution by adding 10 µL of each of to 950 µL of MeOH. 10 µL of this solution was then added to each calibration sample.
- » Equilibration solvent (0.1% formic acid) was made by adding 100 μ L of formic acid to 99. 9mL of water (18.2 M Ω -cm)
- Wash 2 solvent (H₂O:MeOH, 60:40, v/v) was made up by adding 60 mL of water to 40 mL of methanol and mixing.
- » Reconstitution solvent was made by mixing 50 mL of mobile A and 50 mL of mobile phase B.

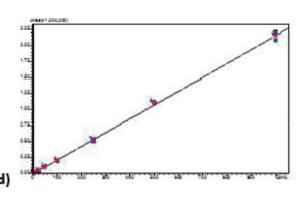


Figure 4. Calibration curves for Estradiol (a), Testosterone (b), 17-OH-Progesterone (c) and Androstenedione (d).

Additional Information

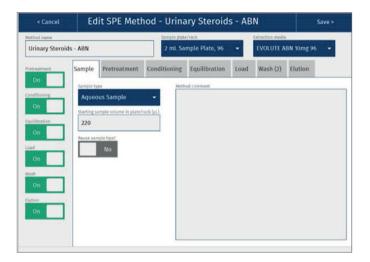
- All data shown in this application note was generated using fresh urine provided by healthy human volunteers.
- » Ammonium fluoride increased sensitivity in both positive and negative ion modes.
- Other strategies for increasing sensitivity:
 - » Increase matrix volumes above 200 µL
 - » Decrease reconstitution solvent volume below 200 μL
 - » Increase injection volumes above 10 μ L.
- » Steroids can exhibit non-specific binding to plastic collection plates. Different plastics exhibit different binding characteristics. Addition of 2 μL of ethylene glycol to the collection plate prior to evaporation can mitigate this issue. Note: No ethylene glycol was used in generation of the data shown in this application note, utilizing collection plate p/n 121-5203.

Ordering Information

Part Number	Description	Quantity
600-0010-PX01	EVOLUTE® EXPRESS 10 mg ABN 96 fixed well plate	1
PPM-96	Biotage® PRESSURE+ 96 Positive Pressure Manifold	1
SD-9600-DHS-EU	Biotage® SPE Dry 96 Sample Evaporator 220/240 V	1
SD-9600-DHS-NA	Biotage® SPE Dry 96 Sample Evaporator 100/120 V	1
121-5203	Collection Plate, 2 mL Square	50
121-5204	Pierceable Sealing Mat	50

Appendix

Biotage® Extrahera™ Settings

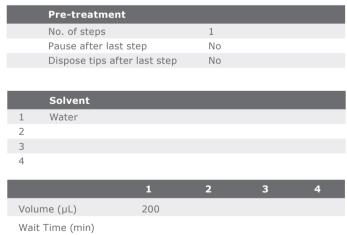

The method described in this application note was automated using Biotage® Extrahera™ and EVOLUTE® EXPRESS ABN 10 mg 96-well plates. This appendix contains the software settings required to configure Extrahera to run this method.

Comparable results were obtained using both manual and automated processing methods.

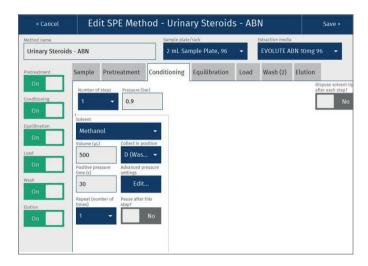
Sample Name: Urinary Steroids - ABN

Sample Plate/Rack: 2 mL Sample Plate, 96

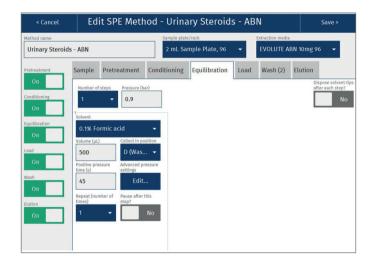
Extraction Media: EVOLUTE® EXPRESS ABN 10 mg 96

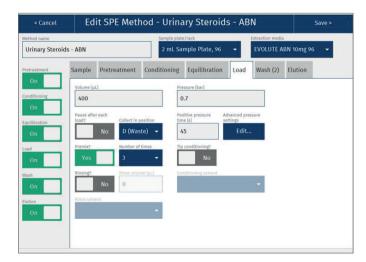


Settings

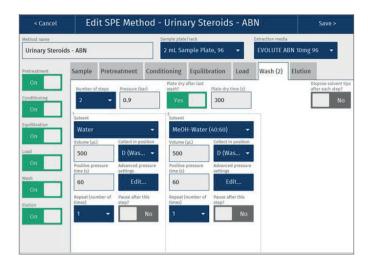

"Sample" Tab
Sample Type:
Starting Sample Volume (µL):
Method Comment:

Aqueous Sample 220




Conditioning	
Pressure	0.9
Pause after each load	No
Volume	500
Collect in position	D
Positive pressure time	30
Advanced Pressure	No
Number of times	1

	Solvent	
1	Methanol	
2		
3		
4		


Equilibration	
Pressure	0.9
Volume	500
Collect in position	D
Positive pressure time	45
Advanced Pressure	No
Number of times	1
Number of times	1

	Solvent
1	0.1% Formic Acid

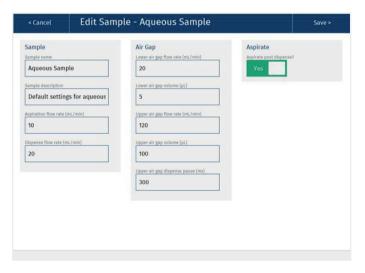
Load	
Pressure	0.7
Pause after each load	No
Volume	400
Collect in position	D
Positive pressure time	45
Premix	Yes
Number of times	3

Wash 1		
Pressure	0.9	
Volume	500	
Collect in position	D	
Positive pressure time	60	
Advanced Pressure	No	
Number of times	1	
Wash 2		
Wash 2 Pressure	0.9	
	0.9 500	
Pressure		
Pressure Volume	500	
Pressure Volume Collect in position	500 D	
Pressure Volume Collect in position Positive pressure time	500 D 60	

	Solvent
1	Water
2	60:40 Water:MeOH

	1
Volume	200
Position	А
Pressure time	0
Repeat	1
Pause	No
Advance Settings	

Advanced Pressure: 2 Steps; 0.5 bar for 30 seconds; 0.9 Bar for 10 seconds; 2.0 bar for 10 seconds

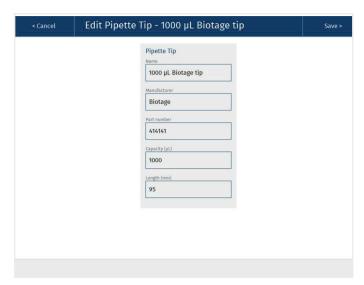


Solvent Properties

	Solvent Description
1	Methanol
2	Water
3	0.1% Formic Acid
4	Water
5	60:40 Water:Methanol

Solvent	1	2	3	4	5	6	7	8	9	10
Reservoir Type		Refill	able				N	on Refillab	le	
Capacity	10	10	10	10	10					
Aspiration flow rate (mL/min)	20	10	20	20	20					
Dispense flow rate (mL/min)	20	20	20	20	20					
Lower air gap flow rate (mL/min)	5	5	5	5	5					
Lower air gap volume (µL)	120	20	20	20	120					
Upper air gap flow rate (mL/min)	100	100	100	100	100					
Upper air gap volume (µL)	300	300	300	300	300					
Upper air gap dispense pause	Yes	Yes	Yes	Yes	Yes					
Conditioning?	3	2	2	2	3					
Conditioning number of times	20	20	20	20	20					
Conditioning flow rate (mL/min)	No	No	No	No	No					
Chlorinated	No	No	No	No	No					
Serial dispense	No									

"Sample" Screen	
Sample name	Aqueous sample
Sample description	Default settings for Aqueous
Aspiration flow rate	10
Dispense flow rate	20
Lower air gap flow rate	20
Lower air gap volume	5
Upper air gap flow rate	120
Upper air gap volume	100
Upper air gap dispense pause	300



"Extraction Media" Screen	
Name	EVOLUTE® EXPRESS ABN 10 mg 96 well plate
Manufacturer	Biotage
Part number	600-0010-PX01
Capacity volume	1000
Format	96
Comment	
Solvent dispensation height	-150
Sample dispensation height	-125
Aspiration height	-125

"Sample Plate/Rack" Screen	
Name	2 mL Sample plate, 96
Capacity volume	1800
Format	96
Aspiration height	-162
Pretreatment dispensation height	-128

"Pipette tip" Screen	
Name	1000 μL Biotage Tip
Manufacturer	Biotage
Part number	414141
Capacity (µL)	1000
Length (mm)	95

Results

Using the parameters described in this appendix, analyte recoveries, %RSDs, linearities and LOQs were comparable for both manually processed and automated methods.

A comparison of analyte recoveries obtained through manual and automated processing is shown in figure 5.

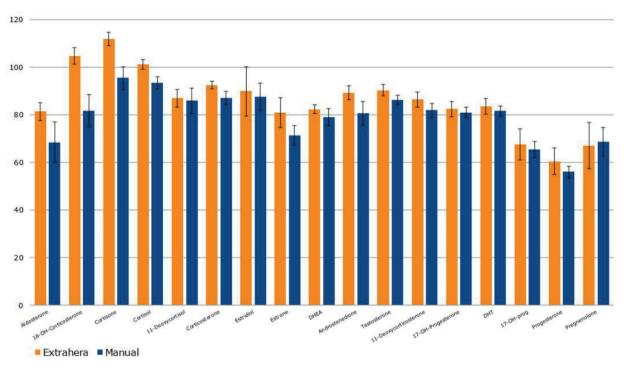


Figure 5. Comparison of steroid recovery and RSD (manual vs automated processing)

EUROPE

Main Office: +46 18 565900
Toll Free: +800 18 565710
Fax: +46 18 591922
Order Tel: +46 18 565710
Order Fax: +46 18 565705
order@biotage.com
Support Tel: +46 18 56 59 11
Support Fax: +46 18 56 57 11
eu-1-pointsupport@biotage.com

NORTH & LATIN AMERICA

Main Office: +1 704 654 4900
Toll Free: +1 800 446 4752
Fax: +1 704 654 4917
Order Tel: +1 704 654 4900
Order Fax: +1 434 296 8217
ordermailbox@biotage.com
Support Tel: +1 800 446 4752
Outside US: +1 704 654 4900
us-1-pointsupport@biotage.com

JAPAN

Tel: +81 3 5627 3123
Fax: +81 3 5627 3121
jp_order@biotage.com
jp-1-pointsupport@biotage.com

CHINA

Tel: +86 21 68162810 Fax: +86 21 68162829 cn_order@biotage.com cn-1-pointsupport@biotage.com

KOREA

Tel: +82 31 706 8500 Fax:+82 31 706 8510 korea_info@biotage.com kr-1-pointsupport@biotage.com

INDIA

Tel: +91 22 4005 3712 india@biotage.com

Distributors in other regions are listed on www.biotage.com

